Porous Substrate Anodes |
---|
The ceramic substrate anode has its problems. It will need a good coating of Lead Dioxide in order to carry the heavy currents need in the (Per)Chlorate cell. It also needs a good flawless coating of Lead Dioxide at the top end so that a good electrical connection can be made to the anode. The porous substrate conducts electrolyte (wicks) up itself and will corrode the connection at the top if the Lead Dioxide coating at the top is not of a high quality. You may need to seal the substrate close to the top. All of the possible advantages of the ceramic substrate (only a poor quality coating of Lead Dioxide would suffice) anode are not realizable in reality. (IMHO)
The inspiration for the anode described here was originally taken from U.S.
patent No. 4,008,144 (See elsewhere on this page) which describes an anode
having a ceramic substrate. Since ceramic is not conductive you cannot
electrodeposit lead dioxide onto it directly, the ceramic must first be made
conductive. This was achived in the patent by depositing lead dioxide onto/into
the ceramic by a chemical technique described in the patent which involved
soaking the ceramic in an oxidizable lead (II) salt (eg.lead nitrate, lead
acetate) and then oxidizing the lead nitrate/acetate crystals in the ceramic to
lead dioxide using an oxidizer (persulphate or hypochlorite at a pH of ~12).
This method was succussful but was laborious as the cycle of soaking and
oxidizing had to be done a number of times. The cycling process can be
eliminated altogether by simply applying a paste of lead dioxide + water to the
ceramic and then electrodepositing on a coating of lead dioxide.
One of the biggest problems with lead dioxide anodes is getting a long term,
reliable, heavy duty current connection to the anode when it goes into service
as an anode in a chlorate or perchlorate cell.
Graphite is a material that
is compatible with lead dioxide but it is difficult to obtain a good, low
resistance contact between the two materials. The only way to make a reliable
contact between graphite and the lead dioxide of an anode proper is to
electrodeposit the lead dioxide onto the graphite connection and the ceramic
substrate at the same time. This is why I would refere to this type of
connection as a grafted graphite connection (as opposed to simply clamping
graphite to lead dioxide). It can be problamatic to get Lead Dioxide to adhere
to graphite unless you have a well controlled plating bath together with
surfactant in the bath or spinning.
If using a metal connection to the
finished anode, there is the problem of oxide buildup between the lead dioxide
and the metal which you choose to make the connection with. The metal oxide
always forms because of electronic interactions between the metal and the lead
dioxide. Silver (Ag) metal is the only easily available metal that has been
shown to be succusseful as a connection because silver oxide is conductive and
will continue to form a low resistance contact between the silver metal and lead
dixoide. ( JES Vol. 105, No.2 page 100 (1958) ) Copper can then be used on top
of the silver. All metal connections will corrode if exposed to salts. The
substrate is inclined to conduct (if porous,ie. ceramic) the salts from the
Chlorate/Perchlorate cell by capillary action up to the metal connection. The
best way to combat the problem is to use the (ceramic substrate) anode
'upsidedown' (relative to the way it was plated) in the Chlorate/Perchlorate
cell. There will be continous coating of lead dioxide on the end of the anode
that has the metal connection which will act as a barrier to the salts in the
substrate.
If the substrate you choose is non porous such as plastic, there
will not be such a tendency for the substrate to conduct the salts from the
Chlorate/Perchorate cell up to the connection. There may still be some capillary
action between the electrodeposited lead dioxide and the substrate itself but I
have seen little.
The ceramic substrate Anode has been use for 5 month continuous operation and was still ok. The electrical connections had to be renewed about 3 times. This simply entailed unwrapping off the coper braid and resilvering the top of the anode and putting on new copper braid.
A problem with this type of Anode it the fact that the porous ceramic substrate will carry up electrolyte to the connection outside the Chlorate cell and corrode the connection. Therefor you need a perfect coating of Lead Dioxide at one end (the connection end) of the anode, this is hard to achive. Therefor his type of anode in not recommended.
If you can't obtain a stone that is long enough they can be joined by drilling a hole in the end of each stone to be joined using a tungsten rod (available from welding store, and used in TIG welders) that has had a chisel shape ground on to one end. You will need to renew the chisel shaped head a number of times before the hole is complete. When both holes are make the rods can be joined using polyester resin and some fiber glass. The fiberglass and resin can be purchased at the car accessory store.
Another type of ceramic substrate that is being suitable with this type of
anode is fired potters clay. You should make up your own mix from ingredients
purchased from the ceramics store. The advantage with this substrate is that you
can make it whatever shape you want but you have the extra trouble of making and
fireing the substrate. See Casting
your own substrate. for further information regarding making your own
substrate. All sharp corners on the substrate should be rounded off before
making the substrate conductive and plating.
There are a range of other inert
materials that could be used for the substrate. Quarry tiles, flagstones, tiles,
asbestos cement, and other acid resistant cements. Plastic can be make
conductive by coating with lead dioxide powder, (see elsewhere on this page).